Parallel N-free order recognition

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Parallel Recognition of Context-Free Languages

This paper presents an efficient parallel approach for recognition of context-free languages. The algorithm takes O(log n) time of computations on a fixed configuration of processors array with reconfigurable bus system. The number of processors required is O(n3). Processor architecture consists of multibus and multiple internal switches in the processors. A specific arrangement of processors i...

متن کامل

Parallel Interval Order Recognition and Construction of Interval Representations

Parallel algorithms for recognizing and representing interval orders are proposed for differ. ent models of parallel random access machines (PRAM). The algorithms accept as input a transitively~losed directed graph with N nodes and M edges. They run in time O0og N) with O(N + M~ processors and O{N + M} space and in co , tam time with O(N z) proces~rs and O{N ~) space depending on the data struc...

متن کامل

N-free posets as generalizations of series-parallel posets

N-free posets have recently taken some importance and motivated many studies. This class of posets introduced by Grillet [8] and Heuchenne [11] are very related to another important class of posets, namely the series-parallel posets, introduced by Lawler [12] and studied by Valdes et al. [21]. This paper shows how N-free posets can be considered as generalizations of series-parallel posets, by ...

متن کامل

Asymptotic Order of the Square-free Part of N!

The asymptotic order of the logarithm of the square-free part of n! is shown to be (log 2)n with error O( √ n).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 1997

ISSN: 0304-3975

DOI: 10.1016/s0304-3975(96)00210-1